Distribution Grid Management

Presented by:
Joe LaCasse
Principle Control Center Leader
Xcel Energy

November 2014
Topics

- Traditional Distribution System
 - Physical Construct
 - Management of Electrical Grid

- Emerging Influences to the Distribution System
 - Distributed Energy Resources
 - Regulatory / Customer
 - Corporate

- Managing the Distribution System in the future - Grid Management
 - Intelligent Field Devices
 - Advanced Distribution Management System (ADMS)
 - IVVO
 - FLISR
 - Operational Resources
Traditional Distribution System – Physical Construct

- One-direction power flow
- Typically radial feeders
- Stand-by generation at customer site
Traditional Distribution System - Management

- SAIDI/CAIDI Reliability Targets
- Outages
 - SCADA for Feeder and Substation level events
 - Customer Call for tap level and below
- Large workforce to manually manage grid.
Emerging Influences to Distribution System – Distributed Energy Resources (DER)

- Solar
 - Rooftop
 - Solar farms
- Wind Generation
- Micro-Grids

Issues:
- Voltage Regulation
- Bi-Directional power flow
Emerging Influences to Distribution System – Regulatory / Customer / Corporate

- **Regulatory**
 - Accountable for MAIFI – Momentary Outages
 - Customer Credits
 - Environmental pressures

- **Customer**
 - Power Quality
 - Reliability

- **Corporate**
 - Safety
 - Revenue
Managing the Distribution System – Grid Management

Solution to electrical influences:

“Grid Management”

- Intelligent Field Devices
- Central Control of Grid functions
 - Advanced Distribution Management System (ADMS)
- Operational Resources managing the Grid
Examples of Intelligent Field Devices:

- Automated Field Switches
 - SCADA (Intelliteam) Switches
 - Intellirupter - recloser
- Remote Fault Indication / Power Flow Sensing devices
- Remote Control of:
 - Capacitor Banks
 - Field Regulators
 - LTC’s
- AMI (Advanced Metering Infrastructure) Meters at customer sites
Grid Management – Advanced Distribution Management System (ADMS)

- Distribution SCADA
- Distribution Network Impedance Model
- Distribution Network Topology processor
- Unbalanced Load Flow / Load Allocation
- State Estimation
Grid Management – ADMS IVVO

- **ADMS – Integrated Volt/Var Optimization (IVVO)**
 - Manage voltage/var flow on feeder/substation bus
 - Central control
 - Transformer LTC’s
 - Feeder Capacitors
 - Feeder Regulators
 - Operational Modes:
 - Demand Reduction
 - Voltage / VAR Optimization
Grid Management – ADMS FLISR

- ADMS – Fault Location Isolation and Service Restoration
 - Model Based (Impedance model built from GIS)
 - Fault data sent/polled automatically from RTU/Relay
 - Fault location identified by applying fault magnitudes to dynamic impedance model
 - Identify/control devices for isolating fault
 - Identify/control devices to restore service to customers
Communications

- Point to Point
- Mesh
- Fiber

Increased criticality of communication availability

- IVVO
- FLISR
Grid Management – Organizational Resources

- Grid Management Organization
 - Engineering/Technician resources
 - ADMS System availability
 - Field Device availability
 - Communications availability
 - Information Technology / Operations Technology Group
 - ADMS System accurate and available
 - Distribution Network Model Accuracy
 - Real-Time use of the ADMS functions for Operations decisions.
 - Control Center Personnel
 - Risk Assessment

- Training
Conclusion – Grid Management

- **ADMS - Distributed Energy Resources**
 - *Power-flow analysis displayed on system model on a tap, feeder, or substation level.*
 - *Distribution SCADA enables state estimation for improved power-flow accuracy.*
 - *Leverage weather, model, and DER characteristics to predict/understand system performance (bi-directional power flow and hidden load)*

- **Reliability – Regulatory and Customer Expectation**
 - *Automated Fault Locating*
 - *Automated FLISR – Central control and Field based*
 - *Improved momentary outage identification*
 - *Model based load flow analysis to identify system issues*

- **Corporate**
 - *Reduce Losses / Leverage voltage for capacity*
 - *Safety – Improved system awareness and decision-making*