50th Annual
MINNESOTA POWER SYSTEMS CONFERENCE
November 4-6, 2014

Earle Brown Heritage Center
6155 Earle Brown Drive
Brooklyn Center, Minnesota

Sponsored by:
College of Continuing Education, University of Minnesota

Co-sponsored by:
IEEE, Power and Energy Society, Twin Cities Chapter

www.cce.umn.edu/mnpowersystems
Tuesday, November 4, 2014

GENERAL SESSION
8:00 a.m.-12:00 noon

Moderator: Chuck Healy
Co-Moderators: Gerry Steffens, Al Haman, Larry Brusseau

7:00 Check-in
Continental Breakfast

8:00 Welcome
Chuck Healy, Electro Tech

8:15 Minnesota Discovery, Research, and InnoVation Economy (MnDRIVE): Robotics, Sensors, and Advanced Manufacturing
Mostafa Kaveh, University of Minnesota

8:45 State-Based Wide-Area Control, Protection, and Automation of Electric Power Systems
Edmund Schweitzer, Schweitzer Engineering Laboratories

9:45 Break

10:00 Emerging Issues and Trends as Viewed from Washington, D.C.
Jim Fama, Edison Electric Institute

10:45 Applied Professional Ethics for Engineers
Rand Park, University of Minnesota

11:45 Lunch
Substation
Moderator: Steve Mohs
Co-Moderators: Chuck Healy, Greg Owen

<table>
<thead>
<tr>
<th>Time</th>
<th>Topic</th>
<th>Speaker/Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:00</td>
<td>System Neutral Grounding Methods</td>
<td>Rumyana Kreidler, Xcel Energy</td>
</tr>
<tr>
<td>1:45</td>
<td>Extracting Valuable Information from HV Circuit Breaker Testing</td>
<td>Charles Sweetser, OMICRON Electronics Corp.</td>
</tr>
<tr>
<td>2:30</td>
<td>Break</td>
<td></td>
</tr>
<tr>
<td>2:45</td>
<td>Power Factor Insulation Diagnosis - Demystifying Standard Practices</td>
<td>Dinesh Chhajer, Megger</td>
</tr>
<tr>
<td>3:30</td>
<td>Bus Protection Considerations for Various Bus Types</td>
<td>Steven Chase, Schweitzer Engineering Laboratories</td>
</tr>
<tr>
<td>4:15</td>
<td>Adjourn</td>
<td></td>
</tr>
</tbody>
</table>

Utility Industry Futures I
Moderator: Mike Steckelberg
Co-Moderators: Tom Guttormson, Rick Johnson

<table>
<thead>
<tr>
<th>Time</th>
<th>Topic</th>
<th>Speaker/Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:00</td>
<td>Grid Friendly Solar PV Power Plant</td>
<td>Mahesh Morjaria, First Solar</td>
</tr>
<tr>
<td>1:45</td>
<td>Battery Storage of Wind Power in Luverne, Minnesota</td>
<td>Dan Girard, S&C Electric Company</td>
</tr>
<tr>
<td>2:30</td>
<td>Break</td>
<td></td>
</tr>
<tr>
<td>2:45</td>
<td>Simulation Study of a Dynamic VAR Compensator as a Solution to a Large Motor Start Problem</td>
<td>Michael Ropp, Northern Plains Power Technologies</td>
</tr>
<tr>
<td>3:30</td>
<td>Determining the Capacity Impacts of Plug-In Electric Vehicles on Xcel Energy's Distribution System</td>
<td>Chris Punt, Xcel Energy</td>
</tr>
<tr>
<td>4:15</td>
<td>Adjourn</td>
<td></td>
</tr>
</tbody>
</table>

Delivery Systems I
Moderator: Al Haman
Co-Moderators: Michael Marz, Scott Hoberg

<table>
<thead>
<tr>
<th>Time</th>
<th>Topic</th>
<th>Speaker/Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:00</td>
<td>Fault Current Calculations and NEC Requirements</td>
<td>Dan Neeser, Eaton’s Bussmann Business</td>
</tr>
<tr>
<td>1:45</td>
<td>An Overview of Restoration Issues and Black-Start Analysis</td>
<td>James Feltes, Carlos Grande-Moran, Siemens PTI</td>
</tr>
<tr>
<td>2:30</td>
<td>Break</td>
<td></td>
</tr>
<tr>
<td>2:45</td>
<td>Energy Storage Can Enable the Wider Deployment of Distributed Generation</td>
<td>Troy Miller, S&C Electric Company</td>
</tr>
<tr>
<td>3:30</td>
<td>Locating Faults by the Traveling Waves They Launch</td>
<td>Edmund Schweitzer, Schweitzer Engineering Laboratories</td>
</tr>
<tr>
<td>4:15</td>
<td>Adjourn</td>
<td></td>
</tr>
</tbody>
</table>

Relaying I
Moderator: Greg Woodworth
Co-Moderators: Mythili Chaganti, Michael Ebert

<table>
<thead>
<tr>
<th>Time</th>
<th>Topic</th>
<th>Speaker/Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:00</td>
<td>Distribution Bus Protection</td>
<td></td>
</tr>
<tr>
<td>1:45</td>
<td>Upgrade Considerations When Integrating Distributed Generation</td>
<td>Ed Atienza, Schweitzer Engineering Laboratories</td>
</tr>
<tr>
<td>2:30</td>
<td>Break</td>
<td></td>
</tr>
<tr>
<td>2:45</td>
<td>False Application of Reliable Relaying Principles – Revisited</td>
<td>Roger Hedding, ABB Inc.</td>
</tr>
<tr>
<td>3:30</td>
<td>Testing the Tester – Common Pitfalls Testing Microprocessor Based Protective Relays</td>
<td>Terrence Smith, GE Digital Energy/Multilin</td>
</tr>
<tr>
<td>4:15</td>
<td>Adjourn</td>
<td></td>
</tr>
</tbody>
</table>

Exhibitor Reception
4:15-6:30 p.m.
DISTRIBUTION AUTOMATION/COMMUNICATIONS

Moderator: Tom Guttormson
Co-Moderators: Dan Nordell, Michael Ebert

- **7:30** Continental Breakfast
- **8:30** Design and Implementation of a Communication Network to Support Real-time Distribution Feeder Automation, SCADA Integration and Backhaul of Substation and Metering Data
 Dan Murray, Siemens Industry, Inc.
- **9:15** Can a Grid Be Smart Without Communications? A Look at IVVC Implementation
 David Aldrich, Beckwith Electric Company
- **10:00** Break
- **10:30** Adaptive Control Strategies and Communications for Utility Integration of Photovoltaic Sites
 Darrin Kite, Schweitzer Engineering Laboratories, Inc.
- **11:15** A Real-World Example of IT and Operations Alignment
 Mark Peterson, Ron Schmitz, Great River Energy
- **12:00** Lunch

PROJECT MANAGEMENT

Moderator: Denny Branca
Co-Moderators: Mythili Chaganti, Rick Johnson

- **7:30** Continental Breakfast
- **8:30** Mackinac HVDC Construction and Testing
 Michael Marz, American Transmission Company
- **9:15** The Center to Grand Forks 345 kV Transmission Line Project—Challenges, Hurdles, and Lessons Learned
 Mike Hennes, Minnkota Power Cooperative
- **10:00** Break
- **10:30** Project Management for Chub Lake Substation
 Greg Schutte, Great River Energy
- **11:15** Fox Valley Tornado Recovery
 Nils Stenvig, American Transmission Company
- **12:00** Lunch

UTILITY INDUSTRY FUTURES II

Moderator: Philip Spaulding
Co-Moderators: Gerry Steffens, Larry Brusseau

- **7:30** Continental Breakfast
- **8:30** Chemical Looping Clean Coal Technology
 Herb Andrus, Alstom Power, Inc.
- **9:15** Great River Energy Distributed Generation Pilot Program
 Robert Sandberg, Great River Energy
- **10:00** Break

POWER GENERATION

Moderator: Scott Hoberg
Co-Moderators: Dave Hoops, Jim Hanson

- **7:30** Continental Breakfast
- **8:30** Photovoltaics Outlook for Minnesota
 Stephen Campbell, University of Minnesota
- **9:15** Effect of Fukushima on the Nuclear Power Industry
 Jon Kapitz, Xcel Energy
- **10:00** Break
CIVIL-STRUCTURAL
Moderator: Mythili Chaganti
Co-Moderators: Rick Johnson, Jim Hanson

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Speaker(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:30</td>
<td>Panel Discussion on Industry Standards</td>
<td>Timothy Wachholz, Michael Anderson, Robert Molde, Michael Garrels, Ulteig</td>
</tr>
<tr>
<td>11:15</td>
<td>Solar Valuation - Process for Determining Economic Value</td>
<td>Doug Larson, Dakota Electric Association</td>
</tr>
<tr>
<td>12:00</td>
<td>Lunch</td>
<td></td>
</tr>
</tbody>
</table>

DELIVERY SYSTEMS II
Moderator: Michael Marz
Co-Moderators: Dave Peterson, Philip Spaulding

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Speaker(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:30</td>
<td>Panel Discussion on Industry Standards</td>
<td>Chengyue Guo, American Transmission Company</td>
</tr>
<tr>
<td>1:00</td>
<td>Enhanced Multiple Contingency Screening and Cascading Analysis for NERC Compliance</td>
<td>Dave Duebner, MISO</td>
</tr>
<tr>
<td>1:45</td>
<td>How MISO Studies Power Plant Retirements</td>
<td></td>
</tr>
<tr>
<td>2:30</td>
<td>Break</td>
<td></td>
</tr>
<tr>
<td>2:45</td>
<td>Utility Scale Wind Turbine Foundation Performance Evaluation</td>
<td>Mark Faulkner, Eaton Corporation</td>
</tr>
<tr>
<td>3:30</td>
<td>Transmission Long Span Design</td>
<td>Joseph LaCasse, Xcel Energy</td>
</tr>
<tr>
<td>4:15</td>
<td>Adjourn</td>
<td></td>
</tr>
</tbody>
</table>
CONCURRENT SESSIONS (continued)
RELAYING II
Moderator: Greg Woodworth
Co-Moderators: Wesley Hammitt, Dave Hoops

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:00</td>
<td>Get in Step with Synchronization – A Review of Synchronization</td>
</tr>
<tr>
<td></td>
<td>Daniel Ransom, Basler Electric Company</td>
</tr>
<tr>
<td>1:45</td>
<td>Transmission Line Automated Relay Coordination Checking</td>
</tr>
<tr>
<td></td>
<td>Garret Sarkinen, Xcel Energy; Saman Alaeddini, Quanta Technology</td>
</tr>
<tr>
<td>2:30</td>
<td>Break</td>
</tr>
<tr>
<td>2:45</td>
<td>Operation and Protection of the Weak Transmission System in SE Colorado</td>
</tr>
<tr>
<td></td>
<td>Ernie Poggi, Edward Mayer, Xcel Energy</td>
</tr>
<tr>
<td>3:30</td>
<td>Special Considerations for Distribution Protection Coordination</td>
</tr>
<tr>
<td></td>
<td>Steve Turner, Beckwith Electric Co. Inc</td>
</tr>
<tr>
<td>4:15</td>
<td>Adjourn</td>
</tr>
</tbody>
</table>

METERING
Moderator: Dan Nordell
Co-Moderators: Tom Guttormson, Larry Brusseau

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:00</td>
<td>A Panel Discussion of Revenue Metering, Arc Flash Hazards, and Mitigation</td>
</tr>
<tr>
<td></td>
<td>Tom Ernst, GE Digital Energy; Dan Nordell, Xcel Energy</td>
</tr>
<tr>
<td>1:45</td>
<td>A Panel Discussion of Revenue Metering, Arc Flash Hazards, and Mitigation (continued)</td>
</tr>
<tr>
<td>2:30</td>
<td>Break</td>
</tr>
<tr>
<td>2:45</td>
<td>Interoperability in Smart Utility Networks</td>
</tr>
<tr>
<td></td>
<td>Phil Beecher, Wi-SUN Alliance</td>
</tr>
<tr>
<td>3:30</td>
<td>Power Quality Measurements from Smart Revenue Meters</td>
</tr>
<tr>
<td></td>
<td>Tom Cooke, EPRI</td>
</tr>
<tr>
<td>4:15</td>
<td>Adjourn</td>
</tr>
</tbody>
</table>

Thursday, November 6, 2014

CONCURRENT SESSIONS
8:30 a.m.-12:00 noon

TUTORIAL I

Moderator: Larry Brusseau, **Co-Moderators:** Jim Hanson, Mythili Chaganti
Insulation Coordination, *Steve Brewer*, Hubbell Power Systems

TUTORIAL II

Moderator: Denny Branca, **Co-Moderators:** Mike Steckelberg, Sairaj Dhople
Electric Drives 101 & Variable-Frequency Drives, *Ned Mohan*, University of Minnesota; *Robin Priestley*, Rockwell Automation

TUTORIAL III

Moderator: Chuck Healy, **Co-Moderators:** Michael Marz, Dave Peterson

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:30 a.m.</td>
<td>Continental Breakfast</td>
</tr>
<tr>
<td>8:30</td>
<td>Tutorial Sessions</td>
</tr>
<tr>
<td>10:00</td>
<td>Break</td>
</tr>
<tr>
<td>10:30</td>
<td>Tutorial Sessions (continued)</td>
</tr>
<tr>
<td>12:00</td>
<td>Adjourn</td>
</tr>
</tbody>
</table>
GENERAL SESSION

Minnesota Discovery, Research, and InnoVation Economy (MnDRIVE): Robotics, Sensors, and Advanced Manufacturing

Mostafa Kaveh, University of Minnesota

The University of Minnesota has launched a new initiative funded by the State of Minnesota called MnDRIVE. One of the focus areas is on Robotics, Sensors, and Advanced Manufacturing. This presentation will explore some possibilities of how Robotics, Sensors, and Advanced Manufacturing could impact and improve the electric utility industry. The presenter will welcome your ideas on the directions of this initiative.

State-Based Wide-Area Control, Protection, and Automation of Electric Power Systems

Edmund Schweitzer, Schweitzer Engineering Laboratories

Today’s stochastic sources (wind, solar) and increasing distances between generation and ever-stiffer loads present new power-system control challenges. Distributed state-based solutions may be the answer, and our presentation will explore the possibilities.

Emerging Issues and Trends as Viewed from Washington, D.C.

Jim Fama, Edison Electric Institute

Jim Fama, Vice President of Energy Delivery at the Edison Electric Institute, will provide a view of current issues and trends in the electric utility industry, covering a wide range of topics including transmission, generation and distribution investment, mergers, reliability, distributed generation, cyber and physical security, regulation and Congress.

Applied Professional Ethics for Engineers

Rand Park, University of Minnesota

This presentation provides ethical theories and frameworks for professional engineers so that they can make ethically defensible decisions that balance rights, duties, benefits, and harms among multiple stakeholders in complicated situations.

SUBSTATION

System Neutral Grounding Methods

Rumyana Kreidler, Xcel Energy

This presentation analyzes different methods of grounding, reasons to use those methods, and ground fault protection. It illustrates advantages and disadvantages of each method; where it is allowed by code, what impact it has on equipment, and what are the operational limitations.

Extracting Valuable Information from HV Circuit Breaker Testing

Charles Sweetser, OMICRON Electronics Corp.

This easy-to-follow paper and presentation focuses on how diagnostic techniques can be applied to HV circuit breakers as part of the standard condition assessment protocol. The audience will be provided with an understanding, application, and analysis of these tests, supported by case studies validating the value that these diagnostic tests bring to HV circuit breaker testing.

Power Factor Insulation Diagnosis—Demystifying Standard Practices

Dinesh Chhajer, Megger

This paper focuses on standard practices used for Power Factor (PF) testing in the field but the reason or logic behind them is rarely questioned. It is intended to explain the unusual PF testing facts and demystify those using case studies and field test results.

Bus Protection Considerations for Various Bus Types

Steven Chase, Schweitzer Engineering Laboratories

This paper examines protection schemes and technologies for several common bus types. Advantages and disadvantages are discussed for each scheme.
Grid Friendly Solar PV Power Plant
Mahesh Morjaria, First Solar

In this presentation we will describe features that enable utility-scale PV power plants to more easily connect to the grid and provide reliable and stable electricity. Such capability is essential for increasing solar contribution into an existing generation portfolio.

Battery Storage of Wind Power in Luverne, Minnesota
Dan Girard, S&C Electric Company

Integrating energy storage with wind-power helps match wind generation to demand and can create additional revenue streams. An 11.5-MW plant in Luverne, Minnesota, is one plant showing how this can be done.

Simulation Study of a Dynamic VAR Compensator as a Solution to a Large Motor Start Problem
Michael Ropp, Northern Plains Power Technologies

Starting of large motors presents significant challenges, especially on weaker power systems. This presentation and accompanying paper describe a simulation study to quantify the impact of starting of proposed new large motor load on a high-impedance feeder, and the use of a dynamic VAr compensator to mitigate the adverse motor start impacts. The results show a) the value of transient simulation in applications of this type; and b) the effectiveness of the dynamic VAr compensator as a solution to this problem.

Determining the Capacity Impacts of Plug-In Electric Vehicles on Xcel Energy’s Distribution System
Chris Punt, Xcel Energy

With electric vehicle sales increasing across the world, their locations and subsequent electric capacity impacts need to be known. This presentation shows how Xcel Energy approached this development on their distribution system.

Fault Current Calculations and NEC Requirements
Dan Neeser, Eaton’s Bussmann Business

This presentation will focus on fault current calculations and associated NEC Requirements. The NEC (and in some instances OSHA) has requirements for the proper application of interrupting rating for overcurrent devices, short-circuit current ratings for equipment, marking of the maximum fault current on service equipment, and selective coordination of critical systems. New tools for the calculation of fault currents also will be shown.

An Overview of Restoration Issues and Black-Start Analysis
James Feltes, Carlos Grande-Moran, Siemens PTI

While modern power systems are highly reliable, extreme events can occur which may lead to a partial or total system blackout. Utilities have the responsibility to develop detailed restoration plans and procedures to restore the power system safely, efficiently, and as expeditiously as possible. This paper gives a brief overview of many of the issues involved in power system restoration and the analysis associated with developing black-start plans.

Energy Storage Can Enable the Wider Deployment of Distributed Generation
Troy Miller, S&C Electric Company

This presentation will focus on how the adoption of distributed energy storage can enable the wider deployment of Distributed Generation such as roof-top photovoltaic and small wind generation. It also will cover case studies around energy storage deployed in islanded networks, including the 1MW Catalina Island, the 2MW Santa Rita Jail, and the 4MW Yerba Buena projects, all located in California.
Locating Faults by the Traveling Waves They Launch

Edmund Schweitzer, Schweitzer Engineering Laboratories

This paper explains the physics of traveling waves (TWs) on power lines, reviews the theory of TWs, explains the foundations of various types of TW fault locators and discusses integration and field experience of TW fault locating in protection relays.

RELAYING I

Distribution Bus Protection Upgrade Considerations When Integrating Distributed Generation

Ed Atienza, Schweitzer Engineering Laboratories

Addition of distributed generation increases distribution feeder and bus fault current. This paper highlights distribution bus protection modifications or upgrades necessary to maintain coordination, minimize equipment damage, and prevent miss operations.

Protective Relaying Redundancy and Reliability

Roy Moxley, Siemens

The presentation discusses the elements of a redundant protection system and what that means in the microprocessor age. The mathematics of reliability is presented and applied to protection scheme logic.

False Application of Reliable Relaying Principles – Revisited

Roger Hedding, ABB Inc.

Twenty years ago the late Walt Elmore presented a paper on several principles used in protection that some assumed to be true, but were indeed false. How do these principles stand in light of modern microprocessor relays? Come and listen.

Testing the Tester – Common Pitfalls Testing Microprocessor Based Protective Relays

Terrence Smith, GE Digital Energy/Multilin

This paper will show common mistakes that are made when testing microprocessor based relays with unrealistic power system conditions. The paper also explains why these conditions are unrealistic and explains how typical relay algorithms respond to these conditions. Unrealistic tests to be explored will include: a step change in frequency for under-frequency testing, absence of pre-fault conditions when testing distance elements, change in voltage phase when testing distance elements, improperly set zero sequence compensation factors in test set software, and improper phase direction on bus protection.

DISTRIBUTION AUTOMATION/COMMUNICATIONS

Design and Implementation of a Communication Network to Support Real-time Distribution Feeder Automation, SCADA Integration and Backhaul of Substation and Metering Data

Dan Murray, Siemens Industry, Inc.

Wake Electric chose to implement a high-speed Fault Location, Isolation, and Service Restoration system (FLISR) to support a critical load from one of three power sources. The Wake FLISR system introduced a new dynamic in communication network design as it required high-speed, low latency, peer-to-peer communications between field devices. This paper describes how this system’s network design requirements were addressed.

Can a Grid Be Smart Without Communications? A Look at IVVC Implementation

David Aldrich, Beckwith Electric Company

This paper focuses on an integrated volt/Var control (IVVC) system that is being installed at Georgia Power Company that does not require any communications to function.

Adaptive Control Strategies and Communications for Utility Integration of Photovoltaic Sites

Darrin Kite, Schweitzer Engineering Laboratories, Inc

The regulations governing distributed energy resource interconnection are currently under revision. This presentation will give an overview of proposed changes along with strategies for incorporating these resources into existing infrastructure.
A Real-World Example of IT and Operations Alignment
Mark Peterson, Ron Schmitz, Great River Energy

Advancement of technologies from analog to digital resulted in a need for better alignment between information technologies (IT) and operational technologies (OT). Great River Energy’s path to IT/OT convergence, lessons learned, and realized benefits will be discussed.

PROJECT MANAGEMENT

Mackinac HVDC Construction and Testing
Michael Marz, American Transmission Company

The Mackinac back-to-back Voltage Source Converter HVDC went into service during July 2014. This presentation discusses project construction and testing challenges due to a compact schedule and unique control scheme.

The Center to Grand Forks 345 kV Transmission Line Project - Challenges, Hurdles, and Lessons Learned
Mike Hennes, Minnkota Power Cooperative

The challenge of building a 250-mile-long 345 kV transmission line in four years is discussed in this presentation. The project concept, permitting, public participation, material acquisition, contractor relationships, ROW process, and construction hurdles will be analyzed to share the lessons learned by the project team.

Project Management for Chub Lake Substation
Greg Schutte, Great River Energy

This presentation is an overview of the project management for Great River Energy’s Chub Lake Substation. Construction of this CapX substation involved modifications to seven existing substations and five transmission lines, and coordination with four interconnected utilities.

Fox Valley Tornado Recovery
Nils Stenvig, American Transmission Company

In August 2013, a storm system through central Wisconsin generated a series of small tornadoes which caused catastrophic damage to major transmission lines, structures, and transmission substation equipment, leaving only one power transformer in service. This presentation will highlight the damages to the transmission system, as well as the emergency recovery efforts and processes to incrementally restore the system over the following hours, days, and months. Lessons learned will be shared as well.

UTILITY INDUSTRY FUTURES II

Chemical Looping Clean Coal Technology
Herb Andrus, Alstom Power, Inc.

Alstom Power Inc. is developing a Chemical Looping Process, utilizing Calcium Oxides as oxygen carriers to transport oxygen from air to the fuel, which has the potential to capture CO2 from new and existing coal-fired power plants while maintaining high plant power generation efficiency. The presentation will report the technical and economic status of Alstom’s development program.

Great River Energy Distributed Generation Pilot Program
Robert Sandberg, Great River Energy

The electric industry is evolving from central station power to more distributed generation (D.G) technologies. It is imperative that utilities such as Great River Energy understand the impact these technologies will have on the electric utility. Great River Energy has undertaken a pilot program to explore D.G technologies such as solar and micro CHP to understand both the economics and technical aspects of D.G.

Renewable Energy Lessons Learned
Neil Kennebeck, Dairyland Power Cooperative

This presentation is an overview of Dairyland Power Cooperative’s renewable energy program with a focus on its successes and failures regarding types of technology and contract structure.
Solar Valuation - Process for Determining Economic Value
Doug Larson, Dakota Electric Association
The State of Minnesota has developed a methodology for utilities to calculate the value of solar energy generated by consumers. This presentation will review the development, components, and application of this solar valuation methodology.

POWER GENERATION

Photovoltaics Outlook for Minnesota
Stephen Campbell, University of Minnesota
This talk will discuss the status and outlook for photovoltaics (PV) technology and market growth as a result of the continued cost reduction associated with the PV learning curve. Grid parity is rapidly becoming reality in parts of the U.S. Implications for both distributed and utility-scale solar energy will be presented. Limitations and long-range concerns will be discussed.

Effect of Fukushima on the Nuclear Power Industry
Jon Kapitz, Xcel Energy
This presentation will describe the U.S. Nuclear Industry response to the March 11, 2011, accident at the Fukushima Dai-ichi nuclear power plant. The presentation will specifically address the changes at the Xcel Energy Monticello and Prairie Island Nuclear Generating Plants.

Synchronous Condensers for Transmission Systems - The Second Generation
Robert D’Aquilia, General Electric
The wide-spread retirement of thermal units along with increased renewable generation require new sources of dynamic reactive power and short circuit strength. Modern synchronous condensers are the premium solution.

Cogeneration Plant Switchgear Replacement Improves Safety and Reliability While Maintaining Service to Critical Loads
Timothy Coyle, Power Consulting & Training, Inc; Rachel Mueller, Mayo Clinic
This presentation describes the replacement of medium voltage cogeneration switchgear for the Mayo Clinic campus in Rochester, Minnesota. It will discuss design, construction, and commissioning considerations used to maintain reliable service while replacing the equipment in place and upgrading protection schemes.

CIVIL-STRUCTURAL

Panel Discussion on Industry Standards
Timothy Wachholz, Michael Anderson, Robert Molde, Michael Garrels, Xcel Energy; Marlon Vogt, Ulteig
Presentations and Q&A session on current developments in ASCE Transmission and Substation Technical Committees, the IEEE Overhead Lines Subcommittee, and NESC code change proposals, including opportunities for industry participation.

Utility Scale Wind Turbine Foundation Performance Evaluation
Chris Kopchynski, Barr Engineering
Strain gages, tiltmeter, and settlement plates have been installed on a University of Minnesota wind turbine foundation in Rosemount, Minnesota. Data collected from this system is correlated with wind turbine SCADA data for foundation performance evaluation. The interim results will be presented.

Transmission Long Span Design
Duane Phillips, Stanley Consultants, Inc.
Presentation of the methods and approach associated with developing detailed design of long spans for transmission lines, focusing on structural design, foundations, and wire strength considerations.
DELIVERY SYSTEMS II

Enhanced Multiple Contingency Screening and Cascading Analysis for NERC Compliance
Chengyue Guo, American Transmission Company

ATC’s enhanced approach for multiple element contingency screening and cascading analysis. This approach includes expanded tripping criteria and consideration of direct-consequential load loss, indirect-consequential load loss, and non-consequential load loss.

How MISO Studies Power Plant Retirements
Dave Duebner, MISO

How does MISO maintain system reliability when generators retire? We’ll review the retirement study process used to determine potential reliability impacts, the alternatives development process, and System Support Resource agreements.

Designing For a Critical Load Using a Spot Network
Mark Faulkner, Eaton Corporation

This presentation describes how a basic spot network works and includes quick guides to use to design the most reliable power system infrastructure for critical loads.

Distribution Grid Management
Joseph LaCasse, Xcel Energy

This presentation will detail the concept of Grid Management, and how it will position Distribution Providers with the tools to meet energy delivery challenges now and in future years.

RELAYING II

Get in Step with Synchronization—A Review of Synchronization
Daniel Ransom, Basler Electric Company

This presentation is a review of power-system synchronizing and sync check—with some new developments, too. Be sure that you are closing the circuit breaker when both sources are in voltage, frequency, and phase coincidence.

Transmission Line Automated Relay Coordination Checking
Garret Sarkinen, Xcel Energy; Saman Alaeddini, Quanta Technology

This presentation demonstrates a process of preparing a system protection database for performing automated relay coordination for transmission lines. It reviews the protection modeling necessary for the studies, tools used to detect modeling errors, selecting the test criteria which the relay coordination is to be evaluated, automating relay coordination conditions, and evaluating the coordination results of the study.

Operation and Protection of the Weak Transmission System in SE Colorado
Ernie Poggi, Edward Mayer, Xcel Energy

This is a discussion of the impacts of a weak short circuit environment on a transmission system that is connected to wind generation and HVDC. Control interaction, unintended switching scenarios, and extreme low short circuit among other behaviors combine for a challenge for operations and protection considerations.

Special Considerations for Distribution Protection Coordination
Steve Turner, Beckwith Electric Co. Inc

This paper discusses special considerations for the proper coordination of feeder relays via the examination of some of the more onerous applications: Multiple Circuits Sharing Same Structures, Single-Pole Tripping, Fast Bus Tripping Schemes, and Overcurrent Pickup Coordination.

METERING

A Panel Discussion of Revenue Metering Arc Flash Hazards and Mitigation
Tom Ernst, GE Digital Energy; Dan Nordell, Xcel Energy

This panel discussion will explore real-life experiences related to arc flash issues involving revenue metering installations. Topics to be discussed include arc flash hazards and their mitigation (engineering, procedural and PPE), site and equipment design practices and employee training. There will also be a discussion of things to do and not to do that have resulted in both
good and bad outcomes. Panel members include Dan Nordell (Xcel Energy), Tom Ernst (GE Digital Energy) and several other key industry representatives

Interoperability in Smart Utility Networks
Phil Beecher, Wi-SUN Alliance
The presentation describes the role of Industry Alliances in defining and verifying Interoperable standards-based Smart Utility Networks.

Power Quality Measurements from Smart Revenue Meters
Tom Cooke, EPRI
This presentation summarizes the PQ measurement capabilities that presently exist in commercially available smart revenue meters, and assesses the potential benefits and challenges in implementing these measurements into distribution applications.

TUTORIAL I
Insulation Coordination
Steve Brewer, Hubbell Power Systems
Voltage surge protection of equipment on the power system is critical to system reliability and cost controls. This presentation will cover how to select the proper selection of the surge arresters used in various application including the MCOV and type of arrester along with other considerations such as pressure relief rating. Once the proper arrester selection has been determined the percent protective margin will be calculated between the arrester and the equipment being protected. The impact of lightning characteristics as well as line and ground lead impact will be included in the review.

TUTORIAL II
Electric Drives 101 and Variable-Frequency Drives
Ned Mohan, University of Minnesota; Robin Priestley, Rockwell Automation
Variable-Frequency Electric Drives are essential in wind-turbines and in pumps/compressors in oil/gas industry spurred by fracking. This tutorial will present their operating principle requiring only basic EE concepts as prerequisites.

TUTORIAL III
Distribution Planning
Al Haman, STAR Energy Services; Tom Guttormson, Connexus Energy; Philip Spaulding, Xcel Energy
The Distribution Planning tutorial will introduce concepts of short- and long-range planning for distribution delivery systems. Topics include planning criteria, load forecasts, system modeling, device ratings, and contingency planning for both rural and urban systems. Case studies will be evaluated.
REGISTRATION AND FEES
The fee for the conference is $300 if received by October 20; if received after October 20 the fee is $350. The conference fee includes all sessions, continental breakfasts, luncheons, refreshment breaks, and the exhibitor reception. If you cancel your registration by October 27 a refund, minus $30, will be issued. If you cancel after this date you will not be eligible for a refund.

EXHIBITOR RECEPTION
The exhibitor reception will be held on Tuesday, November 4, from 4:15-6:30 p.m. Conference attendees are invited to attend this reception to view the exhibits, meet the exhibitors, and enjoy some hors d’oeuvres and beverages.

CONTINUING EDUCATION UNITS (CEUs)
Participants who attend the entire conference will receive 1.5 University of Minnesota, College of Continuing Education CEUs. Participants who attend only Tuesday and Wednesday will receive 1.2 CEUs. One CEU is defined as 10 contact hours of participation in an organized continuing education. A CEU certificate will be sent to each participant after the conference. A permanent record of CEUs earned will be maintained by the University of Minnesota Office of Admissions and Record Transcript Unit.

PROGRAM INFORMATION
612-624-3492
cceconf3@umn.edu

REGISTRATION INFORMATION
612-625-2900
cceinfo@umn.edu

ADDITIONAL INFORMATION
Visit the conference website, www.cce.umn.edu/mnpowersystems for additional information on:
• Exhibitor information and registration
• 2015 Call for Presentations
• Conference papers and PowerPoints

Disability accommodations will be provided upon request. This publication is available in alternative formats upon request. Call 612-624-3492.
The University of Minnesota is an equal opportunity educator and employer.

2014 MIPSYCON PLANNING COMMITTEE

Denny Branca
Eaton Corporation

Larry Brusseau
MAPPCOR

Mythili Chaganti
Xcel Energy

Sairaj Dhople
University of Minnesota

Michael Ebert
AMEC

Kristi Fischer
University of Minnesota

Catherine Flannery
University of Minnesota

Tom Guttormson
Connexus Energy

Al Haman
STAR Energy Services

Wesley Hammitt
ABB Inc.

Jim Hanson
Consulting Engineers Group

*Chuck Healy
Electro Tech

Scott Hoberg
Minnesota Power

David Hoops
GE Energy

Rick Johnson
Otter Tail Power Company

Michael Marz
American Transmission Company

Zack McGough
University of Minnesota

Steve Mohs
Burns & McDonnell

Dan Nordell
Xcel Energy

Greg Owen
IEEE PES Twin Cities
Chapter Chair

Dave Peterson
Dairyland Power Cooperative

Philip Spaulding
Xcel Energy

Mike Steckelberg
Great River Energy

Gerry Steffens
Consultant

Greg Woodworth
Siemens Energy

*Planning Committee Chair
Name (Last) (First) (M.I.)

Business Address (Street/P.O. Box) City State Zip

E-mail

Company/Institution Title/Position

Daytime Telephone Home Telephone

Conference Fee
☐ Enclosed is $300 in full payment of the conference registration fee (received by October 20).
☐ Enclosed is $350 in full payment of the conference registration fee (received after October 20).

Meal Options
☐ I am requesting vegetarian lunches. ☐ I am requesting gluten-free lunches.

Tutorial Options
☐ I plan to attend the “Insulation Coordination” Tutorial.
☐ I plan to attend the “Electric Drives 101 and Variable-Frequency Drives” Tutorial.
☐ I plan to attend the “Distribution Planning” Tutorial.
☐ I don’t plan to attend the Tutorials.

Method of Payment
☐ Enclosed is a check or money order payable to the University of Minnesota.
☐ The fee will be paid by my employer. Enclosed is a purchase order.
☐ Payment should be charged to my credit card (check one).
☑ Visa ☐ MasterCard ☐ Discover ☐ American Express

Credit Card Number Expiration Date

Name as printed on card (please print)

Signature of cardholder

How to Register
Register Online:
www.cce.umn.edu/mnpowersystems
The most secure form of registration

Fax to (with credit card information):
612-624-5359
This fax will be received in a secure location.

Mail to (with credit card information):
University of Minnesota
College of Continuing Education Registration Center
201 Coffey Hall
1420 Eckles Ave
Saint Paul, MN 55108

If your check is returned because of insufficient funds or closed account, or because you have made a stop payment request, you will be charged a check handling fee of $20.
The information on this form is private data, used to identify and locate you, obtain payment, and enable instructors to better know their audience. Name, address, and payment method are mandatory. Information on this form may be shared with instructors and program co-sponsors.